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Abstract
We have studied the electronic and magnetic properties of Fe–Pt, Co–Pt and
Ni–Pt alloy systems in ordered and disordered phases. The influence of
various exchange–correlation functionals on the values of equilibrium lattice
parameters and magnetic moments in ordered Fe–Pt, Co–Pt and Ni–Pt alloys
have been studied using the linearized muffin-tin orbital method. The electronic
structure calculations for the disordered alloys have been carried out using an
augmented space recursion technique in the framework of the tight binding
linearized muffin-tin orbital method. The effect of short-range order has also
been studied in the disordered phase of these systems. The results show good
agreement with available experimental values.

1. Introduction

The magnetic and chemical interactions in solid solutions, their interdependence and
the role they play in determining the electronic and magnetic properties of transition
metal alloys have been the subject of extensive research for many years. The interplay
between magnetism and spatial order in transition metal alloy systems has been extensively
studied both experimentally [1–5] and using phenomenological models based on statistical
thermodynamics [6–22].

In this paper, we studied the electronic and magnetic properties of ordered as well as
disordered phase of the Fe–Pt, Co–Pt and Ni–Pt. Many studies on optical and magneto-optical
characterization of these systems are available in the recent literature [23]. Nevertheless, a
systematic first-principles study bringing out the interdependence of the magnetic and chemical
ordering and the trend in this alloy series is lacking. The present paper aims at a systematic
and comparative first-principles study of the electronic structure and magnetism in these
systems, using techniques based on the local spin density approximation (LSDA) of the density
functional theory.
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Considering the case of ordered alloys, we have carried out a thorough study including
careful investigation of the influence of various local, as well as non-local, exchange–
correlation functionals on the value of the equilibrium lattice parameters and magnetic moments
of ordered Fe–Pt, Co–Pt and Ni–Pt alloy systems.

The calculational scheme used for our calculations of disordered alloys is based on an
augmented space recursion (ASR) technique. While the majority of the existing electronic
structure calculations on disordered alloys have been based on the coherent potential
approximation (CPA), the CPA, being a single-site mean-field approximation, cannot take
into account the effect, at a site, of its immediate environment. As an alternative approach,
Saha et al [24] have introduced the augmented space recursion (ASR) based on the combination
of the augmented space formalism (ASF) first suggested by Mookerjee [25] and the recursion
method of Haydock et al [26]. In this formalism, the configuration averaging is carried out
without having to resort to single-site approximations. The recursion method allows one to
take into account the effect of the local environment on electronic properties. Moreover, the
convergence of various physical quantities calculated through recursion with the number of
recursion steps and subsequent termination has been studied in great detail [27, 28]. Among the
various advantages of the ASR in going beyond the single-site approximation is the possibility
of the inclusion of local lattice distortions [29], which is important in the case of alloys with a
size mismatch between components, as in the case of Fe–Pt, Co–Pt and Ni–Pt.

An important aspect in understanding the interplay between magnetism and ordering
in disordered transition metal alloys involves investigation of the influence of the local
environment, namely the short-range ordering (SRO) effect, on the electronic and magnetic
properties of these alloys. There have been determinations of SRO parameters for different
degrees of disorder using first-principles techniques [30–32] or extraction of these parameters
from experiments and analysis of their effect on electronic structure and properties [33–35].
SRO for a disordered binary alloy AxB1−x is described, for example, by the Warren–Cowley
parameter [36] which is defined as

αAB
r = 1 − PAB

r

y
(1)

with the B atom occupying the r th nearest-neighbour site of the central A atom. y = 1 − x
denotes the macroscopic concentration of species B and PAB

r is the joint probability of finding
a B atom anywhere in the r th shell.

Mookerjee and Prasad [37] introduced a method for calculating the electronic structure
of disordered alloys with short-range order (SRO) which is based on a generalization of the
augmented space theorem [25]. Saha et al [38] implemented this within the framework of
the recursion method. Later Ghosh et al [39] extended the technique to magnetic Co–Pt and
Co-Pd systems. In the present paper we have carried out charge-self-consistent calculations
based on this generalized ASR technique to examine the short-range ordering effect in Fe–Pt,
Co–Pt and Ni–Pt systems.

This paper has been organized in the following manner. Section 2 is devoted to theoretical
and computational details. The results of our study along with comparisons with existing
experimental and theoretical studies have been discussed in section 3. We end the paper with
the summary and conclusion in section 4. Some of the relevant equations of the generalized
augmented space recursion method have been put in the appendix.

2. Theoretical and computational details

For ordered structures we have performed total energy density functional calculations. The
Kohn–Sham equations were solved in the local spin density approximation (LSDA) with
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von Barth–Hedin (vBH) [40] and Vosko–Wilk–Nusair (VWN) [41] exchange correlations
as well as in the non-local (generalized gradient approximation (GGA)) Langreth–Mehl–
Hu (LMH) [42] and Perdew–Wang (PW) exchange [43] correlations. The calculations have
been performed in the basis of tight binding linear muffin-tin orbitals in the atomic sphere
approximation (TB-LMTO-ASA) [44–47] including combined corrections. The calculations
are semi-relativistic through the inclusion of mass-velocity and Darwin correction terms. The
k-space integration was carried out with a 32×32×32 mesh resulting in 969 k points for cubic
primitive structures and 2601 k points for tetragonal primitive structures in the irreducible part
of the corresponding Brillouin zone. The convergenceof the magnetic moments with respect to
k points has been checked. To get theoretical estimates of the equilibrium lattice parameters,
we have carried out the minimization of the self-consistent TB-LMTO-ASA total energies,
varying lattice parameters for Fe–Pt, Co–Pt and Ni–Pt alloys at different concentrations.

Our disordered calculations are based on the generalized ASR technique [37–39, 48, 49].
The Hamiltonian in the TB-LMTO minimal basis is sparse and therefore suitable for the
application of the recursion method introduced by Haydock et al [26]. The ASR allows
us to calculate the configuration averaged Green functions. It does so by augmenting the
Hilbert space spanned by the TB-LMTO basis by the configuration space of the random
Hamiltonian parameters. The configuration average is expressed exactly as a matrix element in
the augmented space. A generalized form of this methodology is capable of taking into account
the effect of short-range order (please see the appendix for the relevant equations). The initial
guess TB-LMTO potential parameters for the self-consistency iterations for disordered alloy
calculations are taken to be the potential parameters of the pure constituents. In subsequent
iterations the potential parameters are obtained from the solution of the Kohn–Sham equation:{

− h̄2

2m
∇2 + V νσ − E

}
φν

σ (rR, E) = 0 (2)

where

V λσ (rR) = V λσ
core(rR) + V λσ

har (rR) + V λσ
xc (rR) + Vmad. (3)

The electronic position within the atomic sphere centred at R is given by rR = r − R. σ is the
spin component. The core potentials are obtained from atomic calculations and are available for
most atoms. For the treatment of the Madelung potential, we follow the procedure suggested
by Kudrnovský et al [50] and use an extension of the procedure proposed by Andersen et al
[44]. We choose the atomic sphere radii of the components in such a way that they preserve
the total volume on average and the individual atomic spheres are almost charge neutral. This
ensures that total charge is conserved, but each atomic sphere carries no excess charge. In
doing so, one needs to be careful about the sphere overlap which should be under certain limits
so as not to violate the atomic sphere approximation.

In these calculations one also needs to be very careful about the convergence of Fermi
energy as well as that of magnetic moments. In fact, errors can arise in the augmented space
recursion because one can carry out only a finite number of recursion steps and then terminate
the continued fraction using available terminators. Also one chooses a large but finite part of
the augmented space nearest-neighbour map and ignores that part of the augmented space very
far from the starting state. This is also a source of error.

The formulation of the augmented space recursion as described in the appendix and used
for calculation in the present paper is the energy-dependent augmented space recursion in
which the disordered Hamiltonian with diagonal as well as off-diagonal disorder is recast into
an energy-dependent Hamiltonian having only diagonal disorder. We have chosen a few seed
points uniformly across the energy spectrum, carried out recursion on those points and spline
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Table 1. The equilibrium lattice parameters in au of Fe–Pt, Co–Pt and Ni–Pt systems in ordered
structures with various choices of exchange–correlation functionals. See the text for various
abbreviations.

x vBH VWN LMH PW Expt.

Fe1−x Ptx

0.00 (BCC) 5.28 5.30 5.36 5.54 5.406 [53]
(FCC) 6.47 6.47 6.53 6.63 6.877 [53]

0.25 (L12) 6.71 6.91 6.99 7.21 7.049 [54]
0.50 (L10) a = 7.16 a = 7.18 a = 7.22 a = 7.46 a = 7.253 [53]

c = 6.94 c = 6.94 c = 7.02 c = 7.26 c = 7.020 [53]
0.75 (L12) 7.25 7.27 7.30 7.54 7.313 [55]

Co1−x Ptx

0.00 (hex) a = 4.65 a = 4.66 a = 4.70 4.83 4.728 [53]
c = 7.48 c = 7.49 c = 7.59 7.78 7.675 [53]

(FCC) 6.55 6.56 6.63 6.81 6.684 [53]
0.25 (L12) 6.78 6.80 6.86 7.06 6.923 [54]
0.50 (L10) a = 7.14 a = 7.14 a = 7.18 a = 7.40 a = 7.204 [53]

c = 6.78 c = 6.78 c = 6.86 c = 7.08 c = 7.007 [53]
0.75 (L12) 7.21 7.22 7.25 7.50 7.240 [53]

Ni1−x Ptx

0.00 (FCC) 6.54 6.55 6.61 6.80 6.646 [53]
0.25 (L12) 6.77 6.78 6.84 7.05 6.890 [56]
0.50 (L10) a = 7.16 a = 7.16 a = 7.18 a = 7.42 a = 7.209 [53]

c = 6.63 c = 6.64 c = 6.74 c = 6.96 c = 6.769 [53]
0.75 (L12) 7.20 7.21 7.24 7.49 7.251 [56]
1.00 (FCC) 7.37 7.38 7.40 7.66 7.400 [53]

fit the coefficients of recursion throughout the whole spectrum. This enabled us to carry out
a large number of recursion steps since the configuration space grows significantly less faster
for diagonal, as compared with off-diagonal, disorder. The convergence of physical quantities
with recursion steps has been discussed in detail earlier by Ghosh et al [51, 52].

We have checked the convergence of Fermi energy and magnetic moments with respect
to recursion steps and the number of seed energy points for the case of the NiPt3 system. We
have found that the Fermi energy and magnetic moments converge beyond 7 recursion steps
and 35 seed energy points. All our calculations reported in the following have been carried
out with 8 recursion steps and 35 seed energy points.

3. Results and discussions

3.1. Lattice parameters

In table 1, we quote the values of equilibrium lattice parameters, obtained by minimizing the
total energy with respect to the lattice parameters for L12 super-structures at 25 and 75% and
a L10 super-structure at 50% concentration of Pt in Fe–Pt, Co–Pt and Ni–Pt alloy systems
with different choices of local as well as non-local exchange–correlation potentials. The first
comment is that non-local exchange–correlation potentials seem to decrease overbinding and
predict larger equilibrium lattice parameters than the local ones. The PW seems to go overboard
and give estimates of the equilibrium lattice parameters which are larger than the experimental
values. The best agreement with experiment is found to be LMH.
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Table 2. The local and average magnetic moments of the Fe–Pt system in ordered structures with
various choices of exchange correlation functionals.

Magnetic moment (µB/atom) of

With eq. lat. par. With expt. lat. par.
Concentration XC used/expt.
of Pt ref. Fe Pt Average Fe Pt Average

0.00 (BCC) vBH (this work) 2.15 2.25
VWN (this work) 2.21 2.30
LMH (this work) 2.29 2.33
PW (this work) 2.55 2.35

Expt. [57] 2.22

0.25 (L12) vBH (this work) 0.00 0.00 0.00 2.57 0.32 2.01
VWN (this work) 2.46 0.29 1.92 2.64 0.34 2.06
LMH (this work) 2.63 0.33 2.06 2.70 0.35 2.11
PW (this work) 2.78 0.35 2.17 2.68 0.37 2.10
Auluck et al (vBH) [54] 2.56 0.26 1.99
Podgorny (VWN) [55] 2.51 0.26 1.95
Hasegawa [16] 2.50 0.50 2.0

Expt. [54] 2.70 0.50 2.15

0.50 (L10) vBH (this work) 2.73 0.35 1.54 2.81 0.35 1.58
VWN (this work) 2.79 0.35 1.57 2.85 0.35 1.60
LMH (this work) 2.88 0.35 1.61 2.90 0.35 1.63
PW (this work) 3.01 0.36 1.69 2.86 0.36 1.61
Osterloh et al [58] 2.92 0.38
Podgorny (VWN) [55] 2.85 0.30 1.57

Expt. [58] 2.80 0.77

Ferromagnetic calculation

vBH (this work) 2.99 0.31 0.98 3.10 0.32 1.02
VWN (this work) 3.12 0.32 1.02 3.15 0.33 1.03
LMH (this work) 3.19 0.34 1.05 3.20 0.34 1.06
PW (this work) 3.24 0.39 1.11 3.12 0.37 1.06
Podgorny [55] 3.22 0.34 1.06

0.75 (L12) Tohyama et al [59] 4.21 0.33

Anti-ferromagnetic calculation

vBH (this work) 3.11 0.15 3.16 0.15
VWN (this work) 3.17 0.15 3.20 0.15
LMH (this work) 3.24 0.15 3.25 0.16
PW (this work) 3.31 0.17 3.18 0.16
Podgorny [55] 3.46 0.16
Tohyama et al [59] 4.13 0.00

Expt. [60] 3.3

3.2. Magnetism of Fe–Pt alloys

3.2.1. Ordered alloys. In table 2, we show two sets of calculations for magnetic moments
in ordered Fe–Pt alloys. In the first set of calculations, we have calculated local as well as
average magnetic moments corresponding to the theoretically estimated lattice parameters
obtained via the energy minimization procedure. In the second set, calculations were done
using experimental lattice parameters.
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For a Fe3Pt alloy in a L12 super-structure the use of the non-local exchange–correlation
functionals LMH appears to give better agreement with experimental values [54] for local
and average magnetic moments compared to local exchange–correlation functionals. This
holds good for both choices of lattice parameters. The results for average and local magnetic
moments from previous works by Auluck et al [54] and Podgorny [55], both using TB-LMTO,
are in agreement with our corresponding results as can be seen from table 2. The differences
seen with these results are primarily due to different computational details. Auluck et al [54]
and Podgorny [55] have used the frozen core approximation in their calculations without taking
into account f states for Pt. Podgorny and Auluck et al in their calculations used 286 and 84 k
points in the irreducible part of the Brillouin zone (BZ), respectively. On the other hand, our
calculations are all electron calculations taking a spdf minimal basis for Pt and using 969 k
points in the irreducible part of the BZ. The local magnetic moment on Pt sites obtained by
Hasegawa et al [16] using the augmented plane wave (APW) method is in exact agreement
with the corresponding experimental value though their average magnetic moment and local
magnetic moment on Fe sites are lower (by 0.20 µB for the average and 0.15 µB for Fe sites)
than the corresponding experimental estimates [54]. Our calculation using the vBH functional
for the exchange–correlation potential and theoretically estimated lattice parameter, leads to
the conclusion of a non-magnetic ground state which is in agreement with that found in a
previous study by Kubler et al [61]. This once again emphasizes that magnetic moments
are very sensitively dependent on the particular exchange–correlation functional used and the
detailed accuracy of the numerical calculations.

For FePt alloys the local magnetic moment of the Fe site in L10 super-structure calculated
using the vBH exchange–correlation potential and experimental lattice parameter shows close
agreement with the experimental value [58]. The LMH based estimates of the local magnetic
moment on Fe sites are rather large compared with the one experimental datum available [58].
The experimental value for the local magnetic moment of Pt in this concentration is not
available. The experimentally estimated average magnetic moment is significantly lower than
that of the calculated values using both local as well as non-local exchange correlations.
However, all the available theoretical estimates by different groups [55, 58] are significantly
higher, just like ours, compared to the experimental estimate quoted by Osterloh [58]. The
experimental result may be interpreted assuming the magnetic moment at the Fe and Pt sites to
be arranged antiparallely, giving rise to a ferrimagnetic ground state. However, we were unable
to show any theoretical evidence for this and our calculations do predict a stable ferromagnetic
alignment as pointed out by Osterloh et al [58]. As in the case of Fe3Pt, the slight difference
between the values obtained by Podgorny [55] and by us is again due to the difference in the
calculational details. In addition to using the frozen core approximation and neglect of f states
in the Pt site, Podgorny has assumed the cubic crystal structure for FePt in a L10 structure
while in reality it is tetragonal. In our calculations, we have assumed the experimentally
observed tetragonal structure. The local magnetic moments obtained by Osterloh et al [58]
using the augmented spherical wave method are higher than ours as well as the calculations
by Podgorny [55].

The experimental ground state ordered magnetic phase FePt3 is antiferromagnetic.
We have carried out calculations on this alloy both in the ferromagnetic as well as
the antiferromagnetic structures. We have found the total energy in the case of the
antiferromagnetic structure is indeed lower than that of the ferromagnetic structure. In the
ferromagnetic calculation, the local as well as the average magnetic moment obtained by
Podgorny [55] using a VWN exchange–correlation potential with theoretical estimates of
lattice parameters is in close agreement with our corresponding value. The calculated local
magnetic moment on Fe sites by Tohyama et al [59] using an empirical tight binding model is
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Figure 1. Magnetic moments in disordered Fe–Pt alloy systems using two different
configuration averaging methods, namely augmented space recursion (ASR) and coherent potential
approximation (CPA), compared to available experimental values given in the Landoldt series [62].

significantly higher than both ours and that of Podgorny [55]. Our calculated magnetic moment
on the Fe site for the antiferromagnetic structure using a PW non-local exchange correlation
with theoretically estimated lattice parameters is in close agreement with the experimental
value [60]. This is the one case where LMH underestimates the staggered magnetization.

3.2.2. Disordered alloys. In figure 1, we compare our calculated disordered magnetic
moments using augmented space recursion with the available experimental values taken from
the Landoldt series [62] as well as with CPA calculations. The average magnetic moments agree
quite well with the corresponding experimental values at all concentrations. The numerical
values of local as well as average magnetic moments calculated using LMTO-CPA are in
agreement with those obtained using the ASR. This shows that the single-site approximation
like CPA works well for the Fe–Pt disordered alloys. The average magnetic moments obtained
by Drchal et al [63] using CPA matches well for most concentrations though they deviate a bit
at low concentrations of Pt. Our calculations use charge neutral spheres to reduce the effect
of the Madelung constant whereas Drchal et al [63] have used equal Weigner–Seitz radii of
both constituents and the effect of the Madelung constant due to charge transfer was taken into
account using the screened impurity model [63]. The local moment on the Fe sites increases
towards the isolated Fe moment as the concentration of Pt increases. This is an indication of
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Figure 2. Magnetic moments as a function of lattice parameters for 25% concentration of Pt in a
disordered Fe–Pt alloy. Circles, squares and diamonds denote local magnetic moment on Fe site,
local magnetic moment on Pt site and average magnetic moment, respectively.

the fact that local environmental effects are unimportant and consequently the CPA and ASR
results agree closely.

At 25% concentration of Pt there is the invar effect which shows anomalies in the thermal
expansion. We have observed two minima of total energy, one with a high moment and a large
lattice constant (6.93 au) and the other with a zero moment and small lattice constant (6.71 au).
The total energy difference between the magnetic and non-magnetic states is 2.4 mRyd/atom,
which is higher than the calculations by Drchal et al (0.7 mRyd/atom) and lower than that
of Staunton et al (15.7 mRyd/atom). In figure 2, we show the behaviour of the magnetic
moment as a function of the lattice parameter which shows the non-magnetic to ferromagnetic
transition at 6.71 au. Our calculated average as well as local magnetic moments on Fe and Pt
sites corresponding to the theoretically estimated lattice parameter of 6.93 au via total energy
minimization on the magnetic state are, respectively, 1.89, 2.44 and 0.24 µB.

Table 3 summarizes the known experimental and earlier theoretical results on disordered
FePt with 25% Pt. The reported experimental results in this case differ from each other. The
localized components of the magnetic moments for Fe (2.03±0.02 µB) and Pt (0.34±0.08µB)
were estimated from spin polarized neutron diffraction measurements by Ito et al [64], while
the magnetization measurements of Caporaletti and Graham [65] indicated moments of 2.75
and 0.45 µB for Fe and Pt, respectively. The values of average magnetic moments quoted in
the Landoldt series for different experiments are 2.02 and 2.27 µB. The theoretical estimates
based on different methods also differ from one another. These differences are mainly due
to the differences in the computational details chosen in each framework and also in the
approximations being used in each method.

For a 75% concentration of Pt our estimate of the magnetic moment on Fe sites is higher
than that measured by Kulikov et al [60] (which is about 2 µB). In order to check the possible
short-range order effect, we have checked the variation of total energy as a function of short-
range order and found that the total energy decreases as short-range order goes from positive
(segregation side) to negative (ordering side),confirming this system as an ordering system. We



Magnetic properties of X–Pt (X = Fe, Co, Ni) alloy systems 2325

Table 3. Various estimates of the local and averaged magnetic moments in Bohr-magnetons for a
disordered Fe75Pt25 alloy.

Author Fe Pt Average

Expt. [64] 2.03 ± 0.02 0.34 ± 0.08 1.61 ± 0.03
Expt. [65] 2.75 0.45 2.20
Expt. (a) [62] 2.02
Expt. (b) [62] 2.27
LMTO-CPA [63] 1.81
KKR-CPA [66] 2.80 0.23 2.16
LCAO-CPA [67] 2.17
ASR (this work) 2.44 0.24 1.89

have also checked the variation of the magnetic moments as functions of the SRO parameter.
We find that both the local and average magnetic moments increase as the SRO parameter
goes from the segregating to the ordering side. This is justified by the fact that the magnetic
moment of Fe is enhanced when it is surrounded by Pt, as we have seen in the ordered alloys.
We therefore conclude that the discrepancy with the experimental data of Kulikov et al [60]
cannot be due to the short-range ordering effect alone, so probably the other possible factors
influencing the experimental results need to be considered.

3.3. Magnetism in Co–Pt alloys

3.3.1. Ordered alloys. Table 4 shows the calculated and experimental magnetic moments
for ordered Co–Pt alloys. No experimental result is available for 25% concentration of Pt
in the ordered case. The local as well as average magnetic moments obtained by Auluck
et al [54] using a vBH exchange–correlation potential with the experimental lattice parameter
are lower (by 0.30 µB for a Co site, 0.01 µB for a Pt site and 0.23 µB for the average)
than our corresponding values, which could be due to differences in computational details as
mentioned in the case of Fe–Pt. The local as well as average magnetic moments obtained by
Kootte et al [68] using the localized spherical wave method using vBH exchange correlation
and experimental lattice parameters are in agreement with our corresponding values.

For 50% concentration of Pt, our results agree well with the previous theoretical
results [54, 68, 69] within the error bars of the different calculational schemes and are in
reasonable agreement with the observed magnetic moments [68] as summarized in table 4.

For 75% concentration of Pt, the calculated local magnetic moments on the Co site
and that of the average magnetic moments using possible exchange correlations with both
theoretically estimated as well as experimental lattice parameters are on the high side as
compared to the experimental estimates [68]. The calculated local moment of Pt using vBH
exchange correlation and a theoretically estimated lattice parameter is close to the experimental
value [68]. The theoretical estimates for local as well as average magnetic moments by
Auluck et al [54] and Kootte et al [68] for a 50% concentration of Pt are in agreement with
our corresponding estimates, as can be seen from table 4. The slight differences seen are
again due to differences in the computational details. The local magnetic moments calculated
by Tohyama et al [59] using the tight binding method are significantly higher than ours as
well as experimental estimates which can be seen from table 4. The recent work by Lange
et al [70] using fully relativistic TB-LMTO with vBH exchange correlation and theoretically
estimated lattice parameters report the local as well as the average magnetic moment close
to our corresponding values. Their experimental value for the average magnetic moment
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Table 4. The local and average magnetic moments of the Co–Pt system in ordered structures with
various choices of exchange–correlation functionals.

Magnetic moment (µB/atom) of

With eq. lat. par. With expt. lat. par.
Concentration XC used/expt.
of Pt ref. Co Pt Average Co Pt Average

0.00 (hex) vBH (this work) 1.55 1.60
VWN (this work) 1.58 1.62
LMH (this work) 1.62 1.64
PW (this work) 1.67 1.63

Expt. Kootte [68] 1.58

(FCC) vBH (this work) 1.57 1.62
VWN (this work) 1.60 1.64
LMH (this work) 1.65 1.67
PW (this work) 1.70 1.66

Expt. Kootte [68] 1.61

0.25 (L12) vBH (this work) 1.56 0.35 1.26 1.69 0.39 1.37
VWN (this work) 1.63 0.37 1.32 1.73 0.40 1.40
LMH (this work) 1.73 0.40 1.40 1.76 0.39 1.42
PW (this work) 1.80 0.39 1.45 1.74 0.41 1.41
Auluck et al [54] 1.39 0.38 1.14
Kootte [68] 1.64 0.36 1.32

0.50 (L10) vBH (this work) 1.69 0.38 1.03 1.79 0.38 1.09
VWN (this work) 1.74 0.39 1.07 1.83 0.39 1.11
LMH (this work) 1.82 0.40 1.11 1.87 0.39 1.13
PW (this work) 1.91 0.42 1.16 1.83 0.40 1.12
Auluck et al [54] 1.85 0.38 1.12
Kootte [68] 1.69 0.37 1.03
Uba [69] 1.60 0.30

Expt. Cable [68] 1.70 0.25 0.98
Expt. van Laar [68] 1.60 0.30 0.95

0.75 (L12) vBH (this work) 1.71 0.25 0.62 1.74 0.26 0.64
VWN (this work) 1.75 0.26 0.63 1.82 0.27 0.65
LMH (this work) 1.83 0.28 0.67 1.87 0.28 0.68
PW (this work) 1.95 0.36 0.76 1.82 0.31 0.69
Auluck et al [54] 1.85 0.25 0.65
Kootte et al [68] 1.69 0.27 0.63
Tohyama et al [59] 2.88 0.38
Lange et al [70] 1.72 0.25 0.62
Uba et al [69] 1.74 0.24

Expt. Menginger [68] 1.64 0.26 0.61
Expt. Lange et al [70] 0.70

matches our corresponding calculated value using non-local exchange–correlation potentials
and experimentally estimated lattice parameters. The supercell calculation of Uba et al [69]
with LMTO using a vBH exchange–correlation potential and experimental lattice parameters
agrees well with our corresponding value.

3.3.2. Disordered alloys. In figure 3, we have shown the comparison of local magnetic
moments of Co and Pt as well as the average magnetic moment of the disordered Co–Pt
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Figure 3. Magnetic moments in disordered Co–Pt alloy systems using two different linearized
muffin-tin orbital (LMTO) based configuration averaging methods, namely augmented space
recursion (ASR) and coherent potential approximation (CPA) as compared to available experimental
values given in the Landoldt series [62]. CPA-LCAO and KKR-CPA denote the coherent potential
approximation based linear combination of atomic orbitals method of Koepernik et al [67] and the
Korringa–Kohn–Rostoker coherent potential approximation method of Ebert et al [72], respectively.

system. Calculations have been done both within the ASR and CPA schemes using vBH
exchange correlations. The comparison with experimental results for the average magnetic
moment taken from the Landoldt series [62] matches well with our calculations. The calculated
magnetic moments with the augmented space recursion method are in better agreement with
experimental results than that of the coherent potential approximation method. From this figure
we can see that the local moment of Co obtained by ASR calculation is almost constant with
the increase in concentration of Pt which is the signature of a weak local environmental effect
on the Co site. This finding is in agreement with that of Sanchez et al [71] who also pointed
out the almost constant magnetic moment at the Co site as a function of Pt concentration.
The average magnetic moments obtained by Koepernik et al [67] using a linear combination
of atomic orbitals combined with the coherent potential approximation (LCAO-CPA) method,
taking into account both diagonal and off-diagonal disorder effects, show close agreement with
our results (except for 20% concentration of Pt where the value obtained by Koepernik et al
[67] is in better agreement than ours) using augmented space recursion (ASR).

The results obtained by Ebert et al [72] using the Korringa–Kohn–Rostoker coherent
potential approximation (KKR-CPA) are higher than ours as well as the experimental values.
The calculations by Ebert et al [72] using KKR-CPA with a single-site approximation were,
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though fully relativistic and did not take into account lattice relaxation and off-diagonal
disorder effects. Therefore it is not surprising that our calculations show better agreement
with experiments. According to the calculation of Shick et al [73] using the fully relativistic
linearized muffin-tin orbital based coherent potential approximation (LMTO-CPA) method the
average and partial magnetic moments of Co and Pt in Co50Pt50 are 1.07, 1.79 and 0.35 µB,
respectively, while the value of Ghosh et al [39] using ASR are 1.05, 1.85 and 0.24 µB for
the same. Our values in this case are 1.05, 1.80 and 0.29. The reason behind the differences
seen between the LMTO-CPA of Shick et al [73] and ASR is again the same as explained
above in connection with KKR-CPA and ASR. Though the calculations by Ghosh et al [39]
(using a theoretically estimated lattice parameter) and ours (using an experimental lattice
parameter) used the same ASR method, ours being charge neutral and self-consistent shows
better agreement for local magnetic moments with corresponding charge neutral and self-
consistent calculations.

In order to investigate the possible influence of short-range order on disordered magnetic
moments, we have performed a complete investigation in terms of the total energy calculations
as a function of the short-range order parameter. Like Fe–Pt, Co–Pt also shows a tendency
to order. We have also checked the variation of magnetic moments as a function of the SRO
parameter and find almost constant local as well as average magnetic moments as the SRO
parameter goes from the segregating side to the ordering side, confirming the very small effect
of short-range order on the magnetism of the Co–Pt alloy system.

3.4. Magnetism in Ni–Pt alloys

3.4.1. Ordered alloys. In table 5, we show two sets of ordered calculations in Ni–Pt
alloys using possible local as well as non local exchange–correlation potentials, one with
theoretically calculated lattice constants via the energy minimization procedure and another
using experimental lattice parameters.

For 25% concentration of Pt, the calculated local as well as average magnetic moments
in ordered Ni–Pt alloys obtained using a vBH local exchange–correlation potential for
a theoretically calculated lattice parameter show very good agreement with experimental
values [75]. The values obtained by Singh [74] in the same case are higher in comparison
to ours and experimental estimates [75]. Singh’s [74] calculations seemingly did not include
the f states in Pt in the TB-LMTO basis. Our test calculations without including the f states of
Pt also show higher values of magnetic moments for this concentration of the Ni–Pt alloy.

For 50% concentration of Pt in a L10 structure calculated local as well as average magnetic
moments using a vBH exchange–correlation potential with the use of an experimental lattice
parameter is closest to the experimental estimate [75]. Our calculations with the use of local
exchange–correlations and theoretically estimated lattice parameters lead to a non-magnetic
ground state which is in agreement with that found in a previous study by Dahmani et al [76].
In our calculations we have taken into account the tetragonal distortion as in the case of Fe–Pt
and Co–Pt alloys in a L10 structure.

For 75% concentration of Pt, for a NiPt3 alloy in a L12 structure there is no experimental
result available. For this concentration we have got a higher local magnetic moment of Ni than
at the 50% concentration of Pt. This was obtained while using local exchange correlations.
In this case if we use non-local exchange correlations then we get the decrease in the local
magnetic moment of Ni on going from 50% to 75% concentration of Pt. The average as well
as the local magnetic moments on Pt sites show the decreasing tendency using both local as
well as non-local exchange correlations with theoretically as well as experimentally estimated
lattice constants.
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Table 5. The local and average magnetic moments of the Ni–Pt system in ordered structures with
various choices of exchange–correlation functionals.

Magnetic moment (µB/atom) of

With eq. lat. par. With expt. lat. par.
Concentration XC used/expt.
of Pt ref. Ni Pt Average Ni Pt Average

0.00 (FCC) vBH (this work) 0.61 0.62
VWN (this work) 0.62 0.64
LMH (this work) 0.64 0.65
PW (this work) 0.66 0.64

Expt. [57] 0.62

0.25 (L12) vBH (this work) 0.50 0.24 0.43 0.57 0.27 0.49
VWN (this work) 0.54 0.26 0.47 0.60 0.29 0.52
LMH (this work) 0.62 0.29 0.53 0.65 0.30 0.56
PW (this work) 0.71 0.36 0.63 0.63 0.32 0.56
Singh [74] 0.58 0.27 0.50

Expt. Parra et al [75] 0.49 0.25 0.43

0.50 (L10) vBH (this work) 0.00 0.00 0.00 0.33 0.17 0.25
VWN (this work) 0.06 0.03 0.05 0.46 0.23 0.34
LMH (this work) 0.55 0.27 0.41 0.65 0.31 0.48
PW (this work) 0.72 0.34 0.53 0.63 0.32 0.48
Singh [74] 0.60 0.27 0.44

Expt. Parra et al[75] 0.28 0.17 0.22

0.75 (L12) vBH (this work) 0.47 0.09 0.18 0.55 0.10 0.21
VWN (this work) 0.50 0.09 0.20 0.57 0.11 0.22
LMH (this work) 0.55 0.11 0.22 0.61 0.12 0.24
PW (this work) 0.65 0.16 0.28 0.58 0.12 0.24
Singh [74] 0.58 0.10 0.22

The calculations by Singh [74] using vBH exchange correlations and theoretically
estimated lattice parameters show that the local magnetic moment of Ni increases while
going from 25% to 50% and decreases while going from 50% to 75% concentration of Pt.
The calculations by Singh [74] did not take into account the tetragonal distortion for a 50%
concentration of Pt, which means putting the lattice parameters a = c, which is not the right
ground state structure. For a test we also repeated our calculation without taking into account
the tetragonal distortion for a 0% concentration of Pt using vBH local exchange–correlation
potentials and theoretically estimated lattice constants and we also observed the same trend
that Singh obtained. However, for the calculation taking into account the degrees of freedom
for tetragonal distortion we found that the magnetic moments vanish with the use of local
exchange–correlation potentials in theoretically estimated lattice parameters.

3.4.2. Disordered alloys. We have plotted the local and average magnetic moments of
a disordered Ni–Pt system in figure 4. The comparison of calculated disordered magnetic
moments using the augmented space recursion (ASR) method with vBH exchange–correlation
potentials and an experimental lattice parameter matches well with experimental values [75] at
all concentrations except 55% and 57% of Pt. Our calculations of magnetic moments using the
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Figure 4. Magnetic moments in disordered Ni–Pt alloy systems using two different
configuration averaging methods, namely augmented space recursion (ASR) and coherent potential
approximation (CPA) as compared to experimental values given by Parra et al [75]. ASR (SRO)
denotes the results with a short-range ordering effect using ASR.

coherent potential approximation (CPA) method using a vBH exchange–correlation potential
and experimental lattice parameters are very different from the calculations using the ASR
method and experimental estimates [75]. Using CPA the local magnetic moments of Ni do not
even follow the trend of corresponding experimental estimates. ASR, being capable of going
beyond the single-site approximation taking into account lattice relaxation and the off-diagonal
disorder effect which is very important in NiPt alloys as was shown in our previous paper [77],
provides better agreement with experiment than CPA. Our calculated values for the 55% and
57% concentrations of Pt using the ASR method are on the high side in comparison to the
experimental estimates, which leads us to suspect the presence of the short-range ordering
effect. We performed calculations incorporating short-range order for all concentrations of
Pt in this system and found that the magnetic moments of Ni decreased by an appreciable
fraction for the 55% and 57% concentration of Pt. The moment of Pt increases slightly. These
give rise to the decrease of average magnetic moment in these concentrations. Calculations
incorporating the effect of short-range order agree well with experimental estimates of Parra
and Cable [75].

4. Summary and conclusions

To summarize, our study on ordered alloys to investigate the role played by different possible
exchange–correlation functionals shows that the choice of exchange–correlation potential has
a considerable effect on the values of the equilibrium lattice constants as well as the magnetic
moments.

The present study on disordered alloys shows that the single-site approximation based
methods work reasonably well for Fe–Pt systems and are in close agreement with our ASR
predictions. For the Co–Pt system, the CPA begins to deviate from the ASR. CPA based
calculations show a slight increase in the local magnetic moment of Co with increasing Pt
concentration, while the ASR shows almost constant behaviour. This indicates the signature
of weak local environmental effects on Co sites.

It is in the Ni–Pt alloy that CPA shows the largest deviation from the ASR. The CPA
estimates of the magnetic moments are quite different from the experimental values. It predicts
an increase of the local magnetic moment on Ni with increasing Pt concentration, whereas
experimentally the reverse behaviour is observed. In the absence of local environment effects,
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an increase of Pt concentration in Ni–Pt should lead to an increase in the local Ni moment,
since isolated clusters of Ni in Pt become more probable. This leads to narrowing of the local
density of states on Ni and consequently, according to the Stoner picture, an increase in the
local Ni moment. Finally in the dilute limit, this local moment should approach the moment
of an isolated Ni atom. This behaviour is certainly seen in Fe–Pt alloys. However, the fragile
moment on Ni seems to need at least 50% Ni atoms in its nearest-neighbour environment,
otherwise it loses its local moment. This is indeed what one sees in experiment and is a strong
indicator of a large local environmental effect in Ni–Pt. The CPA predicts an increase of
the local magnetic moment on Ni with increasing Pt concentration. This is expected, since
the CPA does not take into account the effect of the local environment. The ASR, however,
predicts the correct trend with increasing Pt concentration. The estimates of the actual value
of the local magnetic moments are also much better.

Our total energy calculation as a function of short-range order confirms the ordering
tendency in these systems. The calculation of magnetic moments as a function of short-range
order shows that its effect is small on the magnetism in Fe–Pt and Co–Pt disordered alloys but
significant on the magnetism of disordered Ni–Pt.

Finally, the numerical details of calculations, convergence with the number of k points
in the Brillouin zone integrations, choice of atomic sphere radii, proper convergences in the
CPA and the ASR and the proper choice of the minimal basis set in the TB-LMTO: all of these
affect the actual values of the estimated magnetic moments.

Appendix

Details of the methodology of augmented space recursion has been presented in earlier papers
referred to in the text. Here we shall quote the key results of TBLMTO-ASR generalized to
take into account the short-range ordering effect. The augmented space Hamiltonian including
short-range order can be written as

Ĥ = H1 + H2

∑
R

PR ⊗ P R
↓ + H3

∑
R

PR ⊗ (T R
↓↑ + T R

↑↓)

+ H4

∑
R

∑
R′

TR R′ ⊗ I + αH2

∑
R′′

PR′′ ⊗ P1
↓ ⊗ (P R′′

↑ − P R′′
↓ )

+ H5

∑
R′′

PR′′ ⊗ P1
↓ ⊗ (T R′′

↑↓ + T R′′
↓↑ )

+ H6

∑
R′′

PR′′ ⊗ P1
↓ ⊗ (T R′′

↑↓ + T R′′
↓↑ )

+ αH2

∑
R′′

PR′′ ⊗ (T 1
↑↓ + T 1

↓↑) ⊗ (P R′′
↑ − P R′′

↓ )

+ H7

∑
R′′

PR′′ ⊗ (T 1
↑↓ + T 1

↓↑) ⊗ (T R′′
↑↓ + T R′′

↓↑ ) (A.1)

where R′′ belong to the set of nearest neighbours of the site labelled R, at which the local
density of states will be calculated. P’s and T ’s are the projection and transfer operators either
in the space spanned by the tight-binding basis {|R〉} or the configuration space associated
with the sites R spanned by {|↑R〉, |↓R〉} as described in [49].

|↑R〉 = √
x |AR〉 +

√
y|BR〉 |↓R〉 = √

y|AR〉 − √
x |BR〉.
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The different terms of the Hamiltonian are given below.

H1 = A(C/�)�λ − (E A(1/�)�λ − 1)

H2 = B(C/�)�λ − E B(1/�)�λ

H3 = F(C/�)�λ − E F(1/�)�λ

H4 = (�λ)
−1/2 SR R′(�λ)

−1/2

H5 = F(C/�)�λ

[√
(1 − α)x(x + αy) +

√
(1 − α)y(y + αx) − 1

]

H6 = F(C/�)�λ

[
y
√

(1 − α)(x + αy)/x + x
√

(1 − α)(y + αx)/y − 1
]

H7 = F(C�)�λ

[√
(1 − α)y(x + αy) − √

(1 − α)x(y + αx)
]

(A.2)

where

A(Z) = x Z A + y Z B

B(Z) = (y − x)(Z A − Z B)

F(Z) = √
xy(Z A − Z B)

α is the nearest-neighbour Warren–Cowley parameter described earlier. λ labels the
constituents A or B in the case of a binary AB alloy. C and � are the potential parameters
describing the atomic scattering properties of the constituents and S is the screened structure
constant describing the underlying lattice which is face-centred cubic (FCC) in the present
case. For convenience, all the angular momentum labels have been suppressed, with the
understanding that all potential parameters are 9 × 9 matrices (for a spd minimal basis set).
We note that in the absence of short-range order (α = 0), the terms H5 to H7 disappear and
the Hamiltonian reduces to the standard one described earlier [49].
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